148 research outputs found

    Searching the Optimal Folding Routes of a Complex Lasso Protein

    No full text

    Ligand-protein interactions in lysozyme investigated through a dual-resolution model

    No full text
    A fully atomistic modelling of biological macromolecules at relevant length- and time-scales is often cumbersome or not even desirable, both in terms of computational effort required and it a posteriori analysis. This difficulty can be overcome with the use of multi-resolution models, in which different regions of the same system are concurrently described at different levels of detail. In enzymes, computationally expensive atomistic detail is crucial in the modelling of the active site in order to capture e.g. the chemically subtle process of ligand binding. In contrast, important yet more collective properties of the remainder of the protein can be reproduced with a coarser description. In the present work, we demonstrate the effectiveness of this approach through the calculation of the binding free energy of hen egg white lysozyme (HEWL) with the inhibitor di-N-acetylchitotriose. Particular attention is posed to the impact of the mapping, i.e. the selection of atomistic and coarse-grained residues, on the binding free energy. It is shown that, in spite of small variations of the binding free energy with respect to the active site resolution, the separate contributions coming from different energetic terms (such as electrostatic and van der Waals interactions) manifest a stronger dependence on the mapping, thus pointing to the existence of an optimal level of intermediate resolution

    Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method

    No full text
    The spatial block analysis (SBA) method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i) the statistical ensemble and (ii) the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ) potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions

    ALADYN: a web server for aligning proteins by matching their large-scale motion

    Get PDF
    The ALADYN web server aligns pairs of protein structures by comparing their internal dynamics and detecting regions that sustain similar large-scale movements. The latter often accompany functional conformational changes in proteins and enzymes. The ALADYN dynamics-based alignment can therefore highlight functionally-oriented correspondences that could be more elusive to sequence- or structure-based comparisons. The ALADYN server takes the structure files of the two proteins as input. The optimal relative positioning of the molecules is found by maximizing the similarity of the pattern of structural fluctuations which are calculated via an elastic network model. The resulting alignment is presented via an interactive graphical Java applet and is accompanied by a number of quantitative indicators and downloadable data files. The ALADYN web server is freely accessible at the http://aladyn.escience-lab.org address

    Is there an association between spatial access to parks/green space and childhood overweight/obesity in Calgary, Canada?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent increase in childhood obesity is expected to add significantly to the prevalence of chronic diseases. We used multivariate multilevel analysis to examine associations between parks/green space and childhood overweight/obesity across communities in Calgary, Canada, a city characterized by intensified urban sprawl and high car use.</p> <p>Methods</p> <p>Body Mass Index was calculated from measured height and weight data obtained from 6,772 children (mean age = 4.95 years) attending public health clinics for pre-school vaccinations. Each child's home postal code was geocoded using ESRI ArcGIS 9.2. We examined four measures of spatial access to parks/green space (based on Geographic Information Systems): 1) the number of parks/green spaces per 10,000 residents, 2) the area of parks/green space as a proportion of the total area within a community, 3) average distance to a park/green space, and 4) the proportion of parks/green space service area as a proportion of the total area within a community. Analyses were adjusted for dissemination area median family income (as a proxy for an individual child's family income) community-level education, and community-level proportion of visible minorities.</p> <p>Results</p> <p>In general, parks/green space at the community level was not associated with overweight/obesity in Calgary, with the exception of a marginally significant effect whereby a moderate number of parks/green spaces per 10,000 residents was associated with lower odds of overweight/obesity. This effect was non-significant in adjusted analyses.</p> <p>Conclusion</p> <p>Our null findings may reflect the popularity of car travel in Calgary, Canada and suggest that the role built environment characteristics play in explaining health outcomes may differ depending on the type of urban environment being studied.</p

    Corresponding Functional Dynamics across the Hsp90 Chaperone Family: Insights from a Multiscale Analysis of MD Simulations

    Get PDF
    Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of the full length protein are available: mammalian Grp94, yeast Hsp90 and E.coli HtpG. These chaperones are studied in complex with the natural ligands ATP, ADP and in the Apo state. Common key aspects of their functional dynamics are elucidated with a novel multi-scale comparison of their internal dynamics. Starting from the atomic resolution investigation of internal fluctuations and geometric strain patterns, a novel analysis of domain dynamics is developed. The results reveal that the ligand-dependent structural modulations mostly consist of relative rigid-like movements of a limited number of quasi-rigid domains, shared by the three proteins. Two common primary hinges for such movements are identified. The first hinge, whose functional role has been demonstrated by several experimental approaches, is located at the boundary between the N-terminal and Middle-domains. The second hinge is located at the end of a three-helix bundle in the Middle-domain and unfolds/unpacks going from the ATP- to the ADP-state. This latter site could represent a promising novel druggable allosteric site common to all chaperones

    Owning the problem: Media portrayals of overweight dogs and the shared determinants of the health of human and companion animal populations

    Get PDF
    Weight-related health problems have become a common topic in Western mass media. News-coverage has also extended to overweight pets, particularly since 2003 when the U.S. National Academy of Sciences announced that obesity was also afflicting co-habiting companion animals in record numbers. To characterize and track views in popular circulation on causes, consequences and responsibilities vis-à-vis weight gain and obesity, in pets as well as in people, this study examines portrayals of overweight dogs that appeared from 2000 through 2009 in British, American and Australian mass media. The ethnographic content analysis drew inspiration from the literature in population health, animal-human relationships, communication framing and the active nature of texts in cosmopolitan societies. Three main types of media articles about overweight dogs appeared during this period: 1) reports emphasizing facts and figures; 2) stories emphasizing personal prescriptions for dog owners, and 3) societal critiques. To help ordinary people make sense of canine obesity, media articles often highlight that dogs share the lifestyle of their human companion or owner, yet the implications of shared social and physical environments is rarely considered when it comes to solutions. Instead, media coverage exhorts people who share their lives with overweight dogs to ‘own the problem’ and, with resolve, to normalize their dog’s physical condition by imposing dietary, exercise and relationship changes, thereby individualizing culpability rather than linking it to broader systemic issues. Keywords: Companion animals; Media; Narrative analysis; Obesity; Public understandin
    corecore